Development and Characterization of a Solar- Based Energy Harvesting and Power Management System for a Wsn Node Applied to Optimized Goods Transport and Storage

نویسنده

  • P. Visconti
چکیده

This paper describes a harvesting and power management system that can be equipped with a Wireless Sensor Network (WSN) node in order to harvest energy presents in the environment to be used for sensor node power supply. The proposed scope is to develop a harvesting board exploiting available integrated circuits and devices for extending battery life-cycle of sensor node developed by Medinok SPA. The aim is to realize a WSN able to perform a monitoring of principal physical parameters deemed of interest in a facility, as automatic as possible, for the storage and handling of goods, applied for example to a commercial seaport, where stored containers need to be continuously monitored. Battery life-time is a main problem especially in networks where sensor nodes are not easily accessible. For this reason, sensor nodes are commonly equipped with power management devices able to supply power in an intelligent way from the harvester when harvestable energy is available or from backup batteries ensuring, under every operating conditions, the correct functioning of the sensor node. In this work, a solar-based harvesting system, based on LTC3330 IC, was designed and tested on Medinote sensor node but usable for any device requiring to be fed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power and Fresh Water Production by Solar Energy, Fuel Cell, and Reverse Osmosis Desalination

This paper presents sizing, energy management strategy, and cost analysis for a configuration consisting of solar photovoltaic (PV) panels, fuel cell (FC) storage system, and reverse osmosis (RO) desalination technology for combined power and fresh water production. In this system, PV is the main power supply source; fuel cell is a storage system accompanied by Hydrogen production and storage d...

متن کامل

HYREP: A Hybrid Low-Power Protocol for Wireless Sensor Networks

In this paper, a new hybrid routing protocol is presented for low power Wireless Sensor Networks (WSNs). The new system uses an integrated piezoelectric energy harvester to increase the network lifetime. Power dissipation is one of the most important factors affecting lifetime of a WSN. An innovative cluster head selection technique using Cuckoo optimization algorithm has been used in the desig...

متن کامل

Implementation of Optimal Load Balancing Strategy for Hybrid Energy Management System in DC/AC Microgrid with PV and Battery Storage

The proposed paper presents the DC/AC microgrid modeling using the Energy storage units and photovoltaic (PV) panels. The modal consists of a two stage power conversion. The power is supplied to the both DC and AC loads by this PV solar panels. The suitable way to explore the PV generation model is by using manufacturer datasheet. A bidirectional converter is connected to the battery storage sy...

متن کامل

Optimization of the PCM-integrated solar domestic hot water system under different thermal stratification conditions

Many researchers have investigated how to increase the overall efficiency of solar-driven thermal systems. Several key parameters, such as collector efficiency and storage tank characteristics, may impose some constraints on the annual solar fraction (ASF) of such systems. In this paper, the behaviour of integrating the phase change material (PCM) in SDHW systems is modelled and optimized n...

متن کامل

Power Distribution Development and Optimization of Hybrid Energy Storage System

In this paper, the development and optimization of Power Distribution Control Strategy (PDCS) have been performed for a Hybrid Energy Storage Systems (HESS) of a Series Hybrid Electric Bus (SHEB). A common PDCS is based on the use of Ultra-Capacitor (UC) pack. A new simple PDCS is developed as a battery based one. For the battery based PDCS, four parameters ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016